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ABSTRACT

We first consider a random walk on the nonnegative integers
whose steps are controlled as follows. Upon arriving at a location
i, a pair of probabilities (p,q) is selected from a given set, a ;
reward r(i,p,q) is received, and the next step takes the walk to
locations i+l, i-1 or i, with respective probabilities p, g and
l-p~-q (g=0 when i=0). This is repeated indefinitely. A rule for
successively selecting the probabilities (p,q) is a control policy.
We identify conditions on the rewards and probabilities under which
there exist monotone optimal policies, for discounted and average
rewards, and we show how to compute some of these policies. For
example, in certain settings it is optimal to increase the tendency
of backward movement of the walk as'its location increases. We

also present similar results for controlling the parameters of a

birth and death process and an MIM|1 queue.K

Key Words: Random walk, birth and death process, MIM]1 queue,

Markov decision process, dynamic programming.
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OPTIMAL CONTROL OF RANDOM WALKS, BIRTH AND
DEATH PROCESSES AND QUEUES

by
Richard Serfozo

Syracuse University

1. Introduction

This study was motivated by the following queueing control
problem, Consider a single server queueing system with exponential
interarrival and service times (an MIM|l queue) whose rates are con-
trolled as follows. At each customer arrival or service completion,
the number of customers in the system is observed. Based on this
number, an arrival and service rate pair (\,p) is selected from a
given set. Costs are incurred for using the rates (A,u), and for
holding customers in the system. The problem is to find a policy
for selecting the rates so as to minimize the (discounted or average)
cost of running the system. It seems reasonable, that the optimal
arrival and service rates should be decreasing and increasing func-
tions, respectively, of the number of waiting customers. That is,
as the queue increases, there should be faster service and fewer
arrivals in order to reduce the gqueue. The question is what types
of costs lead to such monotone optimal policies? We address this
problem herein for a more general birth and death process and for
a simple random walk. |

We begin by considering a random walk on the nonnegative
integers whose steps are of size +1 , -1 or 0 with respective

probabilities p , q , and 1l-p-q , where the (p,q) is

This research was partially sponsored by the Air Force Office
of Scientific Research Grant #AFQSR-74-2627, and by the National
Science Foundation Grant #ENG75-13653.

s
e




R i e e

selected at each step depending on the location. In Sections 3-5,
we present very general conditions under which it is optimal to
increase (or decrease) the tendency of backward movement of the
walk as its location increases. We do this for discounted and
average rewards over infinite or finite time horizons. 1In Section
5 we discuss the case where the (p,q)'s may depend on the location.
Our analysis is based on three results that apply to more general
Markov decision processes. They are (1) a criterion for establishing
the existence of a monotone optimal policy (Proposition 2.1, which
is generalized in Serfozo (1977) and Topkis (1978)), (2) a sufficient
condition for the upper envelope of a family of concave functions,
defined on the integers, to be concave (Proposition 2.2), and (3) a
result for obtaining a monotone average optimal policy from a set
of monotone discounted optimal policies (Proposition 4.1, an exten-
sion of Theorem 1 in Derman (1962)).

In Section 6 we consider a birth and death process whose birth
and death rates are controlled whenever the process takes a jump.
We show that the optimal policies for this continuous time process
are the same as those for a discrete time random walk as described
above. This follows by an equivalence between continuous and dis-
crete time Markov decision processes (see Lippman (1975) and
Serfozo (1979)), which is an extension of that used by Howard and
Veinott. We then apply our results for random walks to describe
optimal policies for controlling the birth and death process. A

special case is the above MIM|1l gueue with controlled arrival and




service rates. Similar queueing control models are (1) MIM|1 queue

with controlled service rate [1]-[3], [10] and [13], (2) MIM|1 queue 1
with controlled arrival rate [10]-[12], and (3) MIG|1l queue with
service switched on or off [5], [8] and [l17]. Many other studies

of controlled queues are referenced in [4], [18] and [19].

2. Preliminaries

The following are some basics of controlled Markov chains
(discrete time Markov decision processes), that we shall use in our
analysis.

Consider a controlled Markov chain that moves in the space of
nonnegative integers as follows. Upon arriving at a location i,
an action a€ {1l,...,m} is selected, a real-valued reward r(i,a)
is received, and the next state is determined by the transition

probabilities p(i,a,j) for j20. This is repeated indefinitely.

A policy £ for controlling this chain is a mapping from the i
state space {0,1,...]} to the action space (1,...,m}, with the meaning
that action f(i) is selected whenever the chain is in state 1i.
We shall consider only these so-called stationary deterministic
policies. As pointed out below, nothing is gained by considering
nonstationary history dependent policies. .

Each policy £, along with a rule for starting the process,
determines a stochastic process {(xn,an):r120} where Xn is the
state of the chain at time n, and an==f(xn) is the action taken.

A policy f* is called o-discounted optimal if

Vf*(i) = szp Vf(i) for all i,




where O<a <1l is a discount factor and

@®
. n _;
Vf(l) = Ef( E o r(xn,an) IXo—l) .
n=0
We also define Vo(i) =0,
n-1 %
Vn(l) = sgp Ef(kzo o r(xk,a.k) |x0=1) for n21

and
V(i) = sup Vf(i) "
f

Similarly, a policy f* is called average optimal if

Pea su:p epf(l) for all i
where
Y 3 -1 (n—l )
D ld) = lim infn “E.l T =r(X., IX . =i).
£ s TR e

We shall assume that the rewards are bounded from above, or

more generally, that

@®
lim sup Ef( z
n’e f k=n

ak max{O,r(xk,ak)] IX0=i = 0 for each i.
Then the above V's are well-defined and =-o< Vf(i) <V(i) <= for
all i and f, see Schal (1975). From the theory of dynamic
programming--as developed by Bellman, Blackwell, Derman, Howard,

Strauch and others, and nicely unified and extended by Hinderer

(1970) and schal (1975)--we have the following results.




Existence of Stationary Discounted Optimal Policies. Within the

class of all history dependent policies, there is a stationary

a—-discounted optimal policy.

Optimality Criterion. A policy f is ag-discounted optimal if and

only if
U(i,f(i)) = max U(i,a) for all i,
a

where U(i,a)=r(i,a)+oZp(i,a,j)Vv(]) .
j

Optimality EquatlcirEE. The Vn and V satisfy the equations

Vn(i) = m:x{r(i,a)+a§.p(i,a,j)Vn_l(j)) for n21, and H

V(i) = max{r(i,a)+ o Z p(i,a,j)Vv(j)} for all i.
a

Value Iteration.

V(i) = lim Vv_(i) for all i.
n-ow i

The following results are useful for establishing monotone
optimal policies in dynamic programming models, see Serfozo (1977) and |
Topkis (1978). Here we shall consider the general optimization problem

v(i) = max u(i,a) for i=0,1,...
a
where a€ {1,...,m} and u is a real-valued function. An optimal
policy for this problem is defined to be any mapping f from

{0,1,...) to (1,...,m} which satisfies




u(i,f(i)) = max u(i,a) for all i.
a

Note that this is an abstraction of the Optimality Criterion.

Here and throughout this article we use a prime to denote
the difference operator with respect to i, namely w' (i) =w(i+l)-w(i) .
In particular we write u'(i,a) =u(i+l,a)-u(i,a) . We also use
increasing and decreasing to mean nondecreasing and nonincreasing,

respectively.

Proposition 2.1. ILet f be the optimal policy defined by

£(i) = max{a:u(i,a) =maxu(i,?)} .
a

If u'(i,a) is increasing (decreasing) in a for each i, then £
is increasing (decreasing).

Proof. Suppose u'(i,a) is increasing in a, and there is an i
such that f(i+l) < f(i) . By the definition of £(i) and our

suppositions, we have

O<u(i,f(i)) -u(i,f(i+l)) <u(i+l,£(i)) =u(i+l,£(i+1)) ,

and so u(i+l,f(i+l))<wu(i+l,£f(i)) . But this contradicts the
definition of f(i+l) . Thus f must be increasing. A similar

argument applies to the decreasing case. |

In order to apply Proposition 2.1 when u(i,a) is a function
of v, as in a dynamic program, some knowledge of the structure of
the value function v may be required. Since v is the upper

envelope of u(-,1) ,...,u(*,m), then v is obviously convex,
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increasing or decreasing when all of the u(-,a)'s are convex,
increasing or decreasing, respectively. The next result describes

conditions under which v is concave.

Proposition 2.2. The function v is concave if either of the fol-

lowing conditions hold.

(1) 'u' (i,a) is increasing in a and u'(i,l) =zu'(i+l,m) for all 1i.
(2) wu'(i,a) is decreasing in a and u'(i,m) 2u'(i+l,1) for all i.
Proof. Suppose (1) holds and let f be any optimal policy. Then

from (1) we have

v' (i) = u(i+l,£f(i+l)) —u(i,£(i)) 2u(i+l,£(1i)) -u(i,£(1))

2 u'(i,l) 2u' (i+1l,m) 2u(i+2,£f(i+2)) —u{i+l, £(i+2)) 2v' (i+1) .

Thus v is concave. A similar argument shows that v is concave if

(2) holds. |

3. Monotone Discounted Optimal Policies for Random Walks.

In this section we shall consider a controlled random walk
on the nonnegative integers that moves as follows. Upon arriving
at a location i, the following events occur:

(a) A pair of probabilities (pa,qa) is selected from the set
<
{(pl,ql),..., (pm,qm)}. We assume that O_pa+ qas 1 and at

least one of these sums is nonzero.

(b) A real-valued reward r(i,a) is received.

§




(c) The next location of the walk is determined by the transition

probabilities

p(i,a,i+l) =Pa . P(i,a,i=-1) =qa . p(i,a,i) = l-pa-qa

when i21, and
p(O,a,1)=pa and p(O,a,0)=l-pa.

This series of events is repeated indefinitely.
The following results describe conditions under which this
random walk has increasing or decreasing g-discounted optimal

policies. Average optimal policies are discussed in the next section.

Theorem 3.1l. Suppose the following conditions hold.

L e oV o oV e d
(1) P, is decreasing and dq, is increasing in a, and p, + qm_<_l :
(ii) r'(i,a) is nonpositive and increasing in a for each 1i.

(iii) r'(i,l) =2r'(i+l,m) for each i.

Then there is an increasing g-discounted optimal policy for control-

ling the random walk.

Theorem 3.2. Suppose the following conditions hold.
OBOMONOPOPIS
(i) P, is decreasing and a, is increasing in a.
(ii) r(i,a) is convex and increasing in i for each a.

(iii) r'(i,a) is decreasing in a for each 1i.

" & K
(iv) Z g maxr(k,a)<o.
k=0 a

Then there is a decreasing a-discounted optimal policy for control-

ling the random walk.

T P FENPT VNP S TOPIIIL SR VIV S VR T




The increasing optimal policy in Theorem 3.1 can be written

as

£(i) = a if ia$i<1a+l,

where 0=11512$...51m_<. 1m+l=°' This means that if the walk

is in location i and 1a_1< 1a+l’ then (pa’qa) is selected to

determine the next location (if ia= ia+1 , action a is never
selected). Since P, is decreasing and qa, is increasing, the f£
selects higher q's and lower p's as the location increases. This
increases the probability of backward movement of the walk as its
location increases, and so the walk tends to stay near zero.
Theorem 3.2 describes the opposite situation where it is optimal
to decrease the probability of backward movement as the location
increases. This tends to push the walk to «, accelerating its
forward movement as it approaches «.

It might appear that condition (i) in both theorems could be
replaced by the weaker condition that pa/qa is decreasing in a.
We feel that this cannot be done, but we do not have a counter-
example to justify this. Note that (i) poses no restriction on
the (p,q)'s for random walks with a controlled ascent (i.e.

By ™ one =qm) or a controlled descent (i.e. By W s =pm) . The
action space {1,...,m} is assumed to be finite just for simplicity.
It could also be a closed interval with the r and p being Borel
measurable.

In Theorem 3.1 the assumptions (i)=(iii) insure that the value

function V is concave, which is a key ingredient for an increasing
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optimal policy. Note that (ii) and (iii) hold if and only if

(1) 02r'(0,m)2r'(0,m-1)2---21r'(0,1) 2r' (1, m) 2z’ (1,m=1) 2 ---

2r'(l,1) 2r'(2,m) 2+--

This is not too restrictive. It is satisfied when r(i,a) =g(a)=-h(i) ,
where h is convex increasing and g has any structure. This is
equivalent to r'(i,a) being nonpositive and independent of a for
each i. Note that (ii) implies that the rewards are bounded from
above; indeed ;
(2) supr(i,a) < maxr(0,a) < =.
i,a a

Similarly, in Theorem 3.2 the (i)-(iii) insure that V is
convex and that the rewards are bounded from below. Clearly (ii)
and (iii) hold if r(i,a) =gl(a)+g2(i) , where g, is convex and
increasing. It is also easy to see that (ii) and maxr(i,a) <u(i) ,

a

where u is a polynomial, imply (iv).

The proof of Theorem 3.1 is based on the following result.
For this we let
(3) f41(1) = max{a: U (i,a) =m§xUn(1.a )
where the Un is given by (recall Section 2)
(4) U (i,a) = r(i,a) +azp(i,a,3)v, (3)

J
r(O,a)+or[(l-pa)Vn(0)+paVn(l)] for i=0

r(i,a) + a[qavn(i-l)+ (l-pa-qa)vn(i) + pavn(i+1)] for iz21

The fn can be viewed as the optimal policy for the first step

in an n-step random walk.




11

Proposition 3.3. Under the assumptions of Theorem 3.1, the Vn(i)

is concave decreasing and fn(i) is increasing in i for each nz21.

Remark 3.4. Consider an N-step random walk as in Theorem 3.1 with
a reward function rn(i,a) for the n-th step (instead of anr(i,a)) .
which satisfies (ii) and (iii) for 1<n<N. Then Proposition 3.3
(with different notation) yields an increasing optimal policy at
each of the N steps. A similar statement holds for decreasing
policies. .
Proof. We shall prove this by induction. The assertion is true
for n=1 by Propositions 2.1 and 2.2, since Vl(i) =maalxr(i,a) .
Now assume the assertion is true for n. The nt+l-th Optimality
Equation is

Vn+l(i) = m:xUn(i,a) c
To prove that Vn+l is decreasing, it suffices, since Vn+1 is

the upper envelope of the functions Un(-,l),...,Un(-,m) , to show
(5) U‘:‘(i,a) <0 for each a and 1i.

And to prove that Vn+1 is concave and fn+1 is increasing, it

suffices by Propositions 2.1 and 2.2 to show that
(6) Ul:l(i,a) is increasing in a for each i, and

(7) U (i,1) 2 UI;(i+1,m) for each i.




N
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To prove (5)-(7), fix an i=21. From (4) it follows that

(8) U, (i,a) r'(i,a) + a[an;!(i-l)+(l—pa-qa)v;l(i) + P V) (i+1)]

T (1,2) + o[V} (1) - q V! (i-1) +p_v"(i)] .

Under the induction hypothesis, the Vxll(i) and V;_;(i) =Vt'1(i+l)-v;x(i)
are nonpositive. Then from the first and second lines in (8), and
assumptions (i) and (ii), it follows that (5) and (6) hold. The

inequality (7) also holds, since (i) and (iii) yield

(9) Ur'!(i+l,m)-U1:‘(i,l) =r'(i+l,m)-r' (i, 1)+« [qlvr';(i-l)+(l-pl-qm)v;;(i) +
pmVr';(i+1)] <0.

Similar arguments prove (5)-(7) for i=0. |

We are now ready to establish the existence of an increasing
a—-discounted optimal policy.

Proof of Theorem 3.1. Consider the policy

(10) f(i) = max{a: U(i,a) =maxU(i,3)} .,
a

where U(i,a) is given by (4) with the n's eliminated. By the
Optimality Criterion, this f is o-discounted optimal. To complete
the proof it suffices, by Proposition 2.1, to show that U'(i,a) is
increasing in a for each i. To this end, note that

r'(0,a) + o[V’ (0)-an' (0)+pav"(0)] for i=0

(11) U'(i,a) =
{r' (i,a) + o[V (i)—an"(i-l)+paV" (1)] for ial.

ST P T —
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By Proposition 3.3 and the Value Iteration V=1lim W, it follows
n-o
that V is concave decreasing. Then using (i), (ii), Vv'(0)<0

and V"(i) <0 in (11) we see that U'(i,a) is increasing in a. |

Proof of Theorem 3.2. From (ii), (iv) and Pf(XkSi+klxo=i) =1 we

have

@ ®
lim sup Ef( z aklr(xk,ak) ) lxo=i) < lim I ak maxlr(i+k,a)l =0.
nve f k=n n»e k=n a

Thus the dynamic programming results in Section 2 hold.

Similar to Proposition 3.3 one can show that each n-period
value function Vn(i) is convex and increasing in i and fn(i) is
decreasing in i. In the induction argument, the Vn is convex
since it is the upper envelope of Un-l("l)""'Un-l("m) which
are clearly convex.

Now consider the g-discounted optimal policy f as defined
by (10). Arguing as in Theorem 3.1, using the property that
V(i) =1lim Vn(i) is convex increasing, it follows that f is
decreag?i.’:g. |

The next result describes some properties of the increasing
a-discounted policies in Theorem 3.l. A similar result holds for

decreasing policies.

gheorem 3.5. Suppose the random walk satisfies the hypotheses of
Theorem 3.1 and let f(i,a) be the increasing og-discounted optimal
policy defined by (10).

(a) The f(i,a) is increasing in o for each 1i.

SPRVVS L s 0 e e WO YT N SR O N L O

Al
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(b) If there is an @, and M such that
. -1 . : :
(12) r'(i=-l,m) < [ao(pm_l-pm+qm-qm_1)] min{r(i,b)-r(i,a):1<a<b<m]
for each i2M, then

(13) f(i,a) =m for each i2M and azao.

In particular, (13) holds for some g and M if

(14) r(i,a) =g(a)-h(i) and h(i) is strictly convex and increasing.

Remarks. Assertion (a) implies that the set {f(.,2) : 0<a<l) con-
sists of a finite number of distinct policies. We use this in
Theorem 4.2 to obtain an increasing average optimal policy from this
set. Assertion (13) implies that the search for an optimal policy
from the infinite set of increasing policies can be restricted to
a finite set of increasing policies.
Proof. (a) For this part we shall affix an « to the functions
defined above to show their dependency on « . Accordingly, we let
fn(i,a) be the optimal solution, as in (3), to the optimization
problem

Vn(i,or) = mngn_l(i,a,a) for 0O<ax<l.
We shall first show by induction on n that fn(i,a) is increasing
in o and Vr'!(i,a) is decreasing in o for each i and n. This
is true for n=1, since Vl(i,a)=m:xr(i,a) and fl(i,a) are inde-

pendent of a. Now suppose it is true for n. Then clearly
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r(O,a+l)-r(0,a)+o:(pa+l-pa)vr'l(0,a) if i=0
(15) Un(i,a+l,ot)-Un(i,a,a)=

r(i,a+l)-r(i,a)+a[(pa+l-pa)vr'1(i,a)

+(q,mq,, 1)V, (i-1,0)) if i21,

and the right side is increasing in a for each i and a. Thus
by Proposition 2.1, with i replaced by «, it follows that
fn+l(i'°') is increasing in a for each i. For a fixed i21l and

@, we can write
(16) V;H-l(i'a) =Un(i+l.b,or)-Un(i:a,a) =r(i+l,b)-r(i,a) +
+ a[pbv;,(i+l,a)+(l-pa-qb)vr'x(i.a)+an;l(i-l.a)] '

where a=fn+l(1,a) and b=fn+l(1+1,a). Since fn+l(-,a) is
increasing in o, there is a B >a such that fn+l(i,a) =a and

s = . ' . ' . o, = . 3
£.41(3+1,8) =b. Using 02V (i,a) 2V (i,B), and 1-p;-q 20 in
(16), it follows that VI'H_l(l,a) zvr'H_l(J.,a) . Thus V1:1+l(l'°’) is
decreasing at ¢ for each ¢ and i=21. This also follows for
i=0, by a similar argument. Hence the induction is complete.

Now consider the policy f(i,a) which is optimal for the
problem

V(i,o) = maxU(i,a,a) O<ca<l.
a

We can write U(i,a+l,a)=-U(i,a,a) as in (15) without the n's. By
the last paragraph and Value Iteration, we know that V' (i,q) =1limV' (i,a)

n-e
is decreasing in ¢, and so U(i,a+l,o¢) -U(i,a,o) is increasing in «
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for each i and a. Thus by Proposition 2.1, it follows that

f(i,e) is increasing in ¢ for each i.

(b) Fix an @2 and i2M. We also assume i21: the proof

is similar for i=0. To prove (1l3) it suffices to show that
U(i,m) 2 u(i,a) for all asm-1,
where U is defined by (4) without the n's. We can write
U(i,a) =r(La)+a§pﬁumj)h(1f(La)Hawﬁ)]
where
w(j) = ip(j,f(j,a),k')V(k) .

Letting ay=f(i-l,0), a;=f(i,o) and a,=f(i+l,a) , we have

(17) u(i,m)-U(i,a) = r(i,m)-r(i,a)+a(p, P, ) [r' (i,a5)+r(i,2a,)~

- r(i,al)+aw'(i)] + a(qa-qm) [r’ (i-l,al)+r(i—l,al)-r(i-l,ao)+aW' (i-l)]

We know that V'=<0, and so

W' (i) = pa2V' (i+1)+(l-pal-qa9)V' (i)+qa1v- (i-1) <0,

i it it ool e P
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since 1l-p_ -q
a, “a,
that r(i,az)Sr(i,al) . for if not, then

2 l—pl-qm 20. Similarly W' (i-1l)<0. Note also

U(i,a,)-U(i,a,) =r(i.az)-r(i,al)+a[(Paz-Pal)V' (i)+(qal-qa2)V' (i-1)] >

which would contradict the optimality of a, = f(i,a) . Similarly,

r(i—l,al) .<_r(i-l.a0) . Using these observations in (17), along

with
r.(ilaz)sr'(i-llal)Sr.(i-llm) ] P1+qm.<_l
and (12), it follows that
U(i,m)-U(i,a) zr(i,m)-r(i,a)+a(pm-pa+qa-qm)r' (i-1,m) 20.

This proves (13). Condition (l4) clearly implies (12) and hence
(13). |

4. Monotone Average Reward Policies for Random Walks

If a Markov decision process has discounted optimal policies
with a special structure, then it is reasonable that there should
be an average optimal policy with the same structure. Wwe shall
show that this is true for our random walk. We also present a
linear program for computing average optimal policies.
We begin with a result that is useful for obtainihg a structured

average optimal policy from structured g~-discounted optimal policies.




18

For this we let (xn’an) be a controlled Markov chain as in Section
2. Let 1 denote the set of all policies f under which the
a~discounted value function Vf(-) is finite for all g in some
neighborhood of 1, and the limit

9 (i) = limn"lE (n;lr(x a_)Ix =i>

f i f k=0 k" k"0
exists for all i, yhere -=< (pf(i) <. The following is an exten-

-

sion of Theorem 1 of Derman (1962).

Progosition 4.1. (a) If f* is a policy in @I which is discounted
optimal for discount factors TR IERE wﬁere o, 1, then

(1) cpf*(i) = fsrélpn <pf(i) for all 1i.

(b) Suppose there is a subset [*c [l which contains an g-discounted
optimal policy for each & in some interval [B,l]}, and q;f(i) = -
for all £¢1. if n* is a finite set, then it contains an average
optimal policy.

Proof. Suppose for now that r<0. We first note that for any

fen,
(2) epf(i) = lim(l—a)vf(i) for all 1.
-]

This follows by the well-known Tauserian theorem [7, p.447] when
cpf(i) is finite. And it follows when cpf(i) =-o, since

v
o

(3)  (l=a)vg(i) < (1-a)zf(kzo oFr (X, ) 1Xg=1)

o

v
-1 F oo . .
Sy Ef (kzo o r(xk.ak)lxo=1) -ocpf(:.) =-® as a=1]1,

where Vg is the integer part of (l-c:r)'1 .

WV SS—




Now using (2) we have for any f€1
(i) = lim(l-¢)V, (i) < lim(l-a_)V_, (1) = @, (1) .
f ) 2 e n’ "f* £*
This proves (1) for nonpositive r . For the general case, let c
be an upper bound for r and consider the Markov decision process
with rewards T(i,a) =r(i,a)-c, transition probabilities p(i,a,j) ,
and average rewards gf . Since T<0 and $f=cpf-c , we have
Oex (1) = 9, (i)+c = sup P_(i)+c = sup o (i) .
3 £ fen ° fen ©
This proves part (a). Part (b) follows from (a), since the
finite set [* must contain a policy which is an-discounted optimal

for some o _=1. |
n

We are now ready to prove the following analogue of Theorem

3.1. A similar result holds for decreasing policies.

Theorem 4.2. Suppose the controlled random walk defined in Section 3
OIS PSS

satisfies the following conditions.
(1) P, is decreasing and q, is increasing in a, and pl+qmsl.
(ii) =r'(i,a) is nonpositive and increasing in a for each i.
(iii) r'(i,l) =2r'(i+l,m) for each i.

" LS
(iv) £ o minr(k,a) >-=.
k=0 a

(v) q,>0, p; >0, pm/qm<l and r'(i,a) <0 for some i and a.

Then thare is an increasing average reward policy tfor controlling

the random walk.
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Proof. We first establish the existence of average rewards. Let

f be any policy, and let
i-1
(4) Y, = kgo pf(k)/qf(k+l) for iz21l,

and
By the standard theory of random walks we have the following cases.

Case 1. The random walk under £ is such that {(0,1,...,N} is a

closed class of positive recurrent states and (N+1,N+2,...} are

transient states if and only if ZY;<®. (When N=«= the latter set
i

is empty.)

Case 2. The random walk under £ has all transient or null recur-

rent states if and only if EYyme,
1

In Case 1 we know that

N
(5) ®g(i) = £(0,£(0))ng(0) + £ x(k,£(k))Y, for all i,
k=1
where
i(l"‘iilYi)-l for i=0
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is the limiting distribution of the walk. Here -«=<¢p_< o, and

£
if N<«, then nf(i)='vi=o for i>N.

In Case 2 we have g (i) =-= for all i. To see this, let
vi(n) denote the number of visits that the random walk makes to
state i in n steps. Conditions (ii) and (v) imply that r(i,a) | -«

as i2 o for each a. Then for any j>1

-1 n =il i-1

o -1 2
n T r(X,,a,) =n £ v.(n)r(i,f(i)) +n Z v.(n)r(i,£(1))
kg = E i=0 3 i=j %
~1 321 RN
SBn " I v;(m)+r(3,£(3))n " T v,(n)
i=0 i=j
_1j'l
= r(j,£(j))+n = £ v,(n)[B-1],
i=0

where B=maxr(0,a). Since each i is transient or null recurrent,
a

then n~1 v;(n) »0 a.s. It follows that
-1 n-1
lim supn T E( T r(Xa)1xg=i) £ r(3.£(3)) .
n- e k=0
Letting j- o yields :pf(i)=-°> for all i.
We have just established the existence of 9 for each policy
f . Also note that (ii) and (iv) imply that
-]
Vf(i) 2 a'nminr:(i+n,a)>-¢D for any £, i, a and «a.
n=0 a
Now let [* denote the set of increasing o-discounted optimal policies
defined by (10) in Section 3 for O<ao<1l. This set is nonempty
since (i)-(iii) are the assumptions of Theorem 3.1 which guarantee
the existence of such policies. It is also finite by Theorem 3.5.

Thus by Proposition 4.1 there is an increasing average optimal policy

in 0*. |
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In Theorem 4.2, we assumed (v) simply to eliminate some
degenerate cases. The ql>0 can be relaxed, but more details are
involved (cf. (4)). The pl>0 along with ql>0 just rules out the
case in which Pymass P ® 0 and each policy determines a walk that
is absorbed at zero. The pm/qm< 1 eliminates the case in which
each . f determines a transient or null recurrent walk with Pp==®.
Here any policy is average optimal. Assumption (iv) insures that
Ve is finite-valued, which is needed to apply Proposition 4.1.
Clearly (ii) and ménr(i,a) 2g(i), where g is a polynomial,

imply (iv).

The random walk we have been considering has an infinite state
space, and so we cannot compute optimal policies for it by the
standard procedures for finite state processes. Variations of these
procedures do apply, however, in some cases as we shall now describe.

Consider a random walk, such as in Theorem 4.2, which has an
increasing average optimal policy £. We assume that ql>0 and
9y >Pp - This insures that each policy determines a positive recur-
rent random walk. We also assume that f is constant, say equal
to m, on the states {M,M+1,...} where M is known. This holds, for
example, if r satisfies (12) or (14) in Theorem 3.5.

Associated with this walk we let n={n(i,a):i=21, 1€a<m,
mn(i,m)=1 for i 2M)} denote a randomized policy such that n(i,a)

is the probability of selecting action a when the walk is in

el SRR AL BORS: . . .
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state i, and m is selected for all i2M. Under the policy n.
the Markov chain (xn,an) is positive recurrent. Letting
v(i,a) = lim P_(X_=i, a_=alX,=j)
4 s n n 0 4

the average reward is

@ m
(7) Qpn = I z V(ila)r(ila) .
i=0 a=1
We can write
m
(8) v(i,a) = v(i)m(i,a) and v(i) = Z v(i,a),
a=1l

where

v(i) = 3_1’2 Pﬂ(xn=llX0=J) 2

Since n(i,m)=1 for iz2M, then by (6) it follows that

(9) v(i) = v(M) (pm/qm)i-M for i=2M.

Consequently, expression (7) simplifies to

M-1 m m
o, = L = v(i,a)r(i,a)+c(M) £ v(Ma)
i=0 a=1 a=1
where
S k
(10) c(M) = T r(mk,m)(p /q )" -
k=0

The problem of maximizing the ©_ over m is clearly equivalent

to the following linear program:
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M-l m m
max £ £ v(i,a)r(i,a)+c(M) = v(M,a)
v(i,a) i=0 a=1 a=1
subject to
m m
Z v(0,a) = = [v(O,a)(l—qa)+-v(l.a)qa]
a=1l a=1l
m m
Z v(j,a) = L [V(j-laa)Pa‘*' V(j:a)(l-Pa"qa) + v(j+l.a)qa]
a=1 a=1l )
for 1sj<MmM-1,
m m
T v(Ma) = T [v(M-1,a)p_+v(M,2)(1-p,~q,) + v (M, a) (P /q)q,]
a=1 a=1
M-l m 5% m
T I v(i,a)+ (1'Pm/qm) Z v(Ma) =1
i=0 a=1 a=1l

0<v(l0,a)<...<v(M,a)sl1 for lsa<m.

Note that the constraints imply that v(i,a) is the limiting dis-
tribution of [(Xn,an)}. An optimal solution v(i,a) of the linear

program, determines the increasing average optimal policy

v(i,a)(g

\a(i.a))'1 0<igm-1
a=1

n(i,a)

1l i2M.

n(i,m)

This will be a nonrandom policy when v(i,a) is calculated by the
simplex algorithm. Note that the exceptionally nice limiting dis-
tribution (9) is the key property that allows us to reduce our
infinite variable optimization problem to a finite variable problem.

This cannot be done for most controlled Markov chains. Even if




v

r‘f
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the M is not known for sure, the above linear program could be
run for a large M and for m equal to 1,2,..., and m. The best
of the resulting policies should be close to being average optimal
over all policies.
For some random walks with simple reward functions r(i,a),

such as polynomials in i, the average reward P in (5) for a
monotone policy might be tractable enough to obtain an optimal
policy by policy improvement or by other ad hoc arguments. An

illustration of this is as follows.

Example 4.3. cConsider a random walk with two possible actions that
ONIPOIPSONOSOIIS

satisfies the following conditions.
(i) 0<gq;=q,, p;+g,<1, p; >p, and p, <1, where pa=pa/qa.

(ii) r(i.,a) =g(a)-hi, where (for simplicity) g(l) >g(2) and h>0.

Let
=n/(1=p )+ (p1-0,) (1=pD) (1=p) "2 (1-p,) "Le, (g (1) =g (2))0 7 (p -6 ) ™
D =
= if pliél
~n2-n(1+p,) (1-p,) 1420, (g (1)-g (2071 (1=p ) ™ i py =1,
and

n* = min{n : Dnso} s

Then an average optimal policy is to select (p;.q,)

when the walk is below state n* and select (pz,qz) otherwise.
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To verify this assertion, let ®n and nn(i) denote the
average reward and limiting distribution for the walk under the
policy of using (pl,ql) when and only when the walk is below state
n. Then from (4)-(6) and some lengthy algebraic manipulations one

can show that

n-1 -1 :
pl "n(o)“n+l(o) (91'92)(1‘92) th if plfl

Pnt+l "% T
1/2 nn(O)rrm_l(O)th if p;=1,

and that Dn is strictly decreasing. This factorization implies that

¢, has a global maximum at n*. This and Theorem 4.2 yield the assertion.

i 5. Random Walks with State Dependent Transitions

We have been discussing a random walk whose step size is
determined by a pair (pa,qa) of probabilities selected from a set
which is independent of the location of the walk. Results similar

to those in Sections 3 and 4 also hold for random walks whose set

of possible actions may depend on the location of the walk. We
illustrate this here by presenting analogues of Theorems 3.1 and
3.2,

Conéider a random walk on {0,1,...) that moves as follows.
Upon arriving at a location i the following events occur:
(a) A pair of probabilities (p(i,a),qg(i,a)) is selected from the
set {((p(i,1),q(i,1)),...,(p(i,m),qg(i,m))].
(b) A reward r(i,a) is received.
(c) The next location of the walk is determined by the transition

probabilities

p(ilali+l) = p(i,a), p(i,a,i-l) =q(ioa) ) p(ioaoi) =1-p(ina)-Q(ioa)o
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when i21l, and
p(0,a,1) =p(0,a) and p(0,a,0)=1-p(0,a) .

This series of events is repeated indefinitely.

For the following result, we let
d(0,a) =-p(0,a) and d(i,a) =q(i,a)-p(i,a) for iz21l.

Theorem 5.1. Suppose p(i,l)=2...2p(i,m), g(i,l)<...<qg(i,m),
d'(i,1)<...<d'(i,m), and p(i,a) +qg(i+l,a)<1 for each i and a.
(a) I1If r'(i,1)<...<r'(i,m)=<0, r'(i,1)=2r’'(i+l,m),
d'(i,1l) 2d'(i+1l,m), and p(i+l,1l) +g(i+2,m) = p'(i+1l,m) <1 for each
i, then there is an increasing g-discounted optimal policy for
controlling the random walk.
(b) If d(i,a) is concave in i and r(i,a) is convex and increasing
in i for each a; and for each i and a, r'(i,l) 2 ese 2 X! (1,m)
®

=z akmgxr(k,a) <o, and p(i+l,a)+q(i+2,a) -p' (i+l,a)<1,

then there is a decreasing g-discounted optimal policy for con-

trolling the random walk.

Proof. The assertions follow by arguments as used in proving

Theorems 3.1 and 3.2. The key idea is to use the following factoriza-

tions in the induction arguments (these are for iz21):

Ur'x(i'a) =r'(i,a)+af [1—p(i,a)-q(i+1,a)]Vr'l(i)+p(i+l,a)vx'l(i+1)+q(i,a)vx'1(i-1
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Ul:l(i+l,m)-U1:1(i,l) =r'(i+l,m)-r' (i,1)+a[p(i+2,m)vr';(i+l)+q(i,l)V;;(i-l)
+ [1-p(i+1,1)-q(i+2,m)+p"’ (i+l,m)]vl';(i)+[d‘ (i,1)=-da:* (i+l,m)]vl'1(i)} ’
and
U;;(i,é) =r“(i,a)+a{p(i+2,a)Vl'_;(i+l)+q(i,a)Vl'_'l(i-l)-d"(i,a)V;)(i)

+ [l-p(i+l,a)-g(i+2,a)+p"' (i+1,a)]Vr';(i)J .

6. Controlled Birth and Death Processes

In this section we shall consider a controlled birth and death
process on the nonnegative integers that moves as follows. Upon
arriving at a state i, the following events occur.

(a) A pair of birth-death parameters “‘a'”‘a) is selected from the
set [(hl,p.l),..., (xm,p.m)] where Ap2A, 2., zxm>o and
0<u.l$ By< ... sum . We also assume A < bm when considering average
optimal policies.
(b) The process remains in state i for a random time which has
an exponential distribution with parameter
)‘a if i=0
A(i,a) =

A_+p if i=1l.

a
Then the process jumps to a neighboring state according to the

transition probabilities gq(0,a,l)=1 for i=0, and

q(i,a,i+l) = xa/(xawa) , and q(i,a,i-1) = pa/(ka+u.a) for i=1l,
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(c) A cost is incurred at a rate c(a)+h(i) per unit time during
the sojourn in i, where h is convex and increasing. A nonnegative
reward R is' also received for a birth (when the process jumps

from i to i+l). This series of events is repeated indefinitely.

We first show that this continuous time controlled birth and
death process is equivalent to a discrete time controlled random
walk. Then we use Theorems 3.1 and 4.2 to establish the existence
of increasing discounted and average optimal policies for the birth
and death process. We also discuss the MiIMI| queue with controlled
arrival and service rates.

We begin by introducing some more notation. A policy £ for
successively choosing the birth-death parameters is defined to be
a mapping from the state space {0,1,...} to the action space {1,...,m}.
Each policy f, along with a rule for starting the process, deter-
mines a continuous time birth and death process whose birth-death
parameters in state i are (kf(i)'“f(i))' We let Yn and Tn denote
the n-th state of the process, and the time at which the process
jumps to state Yn , respectively. The discounted reward for the
process if given by

o =BT

Wf(i) = Ef(nioe g‘B (Yn,an) IXo=i ., where an=f(Yn) :

B>0 is a continuous time discount factor, and ga(i,a), the dis-

counted gain in a sojourn, is
B 1 -t
Ecle  'Re(yy.i+1) =( " (c(a)+n(i))e™Ptativ =i, a =a
£ 1 5 0 0

ga (i,a)

(A R-c(a)-h(i))/(B+nr(i,a)) .

S— RS 7o
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Here Tl is the exponential sojourn time in state i » the §(i,j)=1
or 0 according as i=j or i#¥j, and a reward p received at time t
has a value pe-Bt . Similarly, the average reward for the process
is
N
(i) = lim inf ¢~ lg Z'tq (X_,a_)IX.=i
¥e(i) = ( 3
R o f\n=o0 0 'n'"n’ 70 ¥

where Nt=sup{n : TnStJ is the number of jumps in time t. A

policy f* is called p-discounted optimal if
i e :
Wf*(l) = SIfxpwf(l,. for all i,
and f* is called average optimal if
yf*(i) = sup‘gf(i) for all i,
f

The following result is a special case of the equivalence
between continuous and discrete time Markov decision processes in

Lippman (1975) and Serfozo (1979).

Theorem 6.1. Consider the birth and death process defined above,
Laana Y o on ]

and consider the random walk defined in Section 3 with

pa=1a/1\, and qa=""a/A where A=A+,

Fi r(i,a) = (\;R-c(a)-h(i))/(p+1) ,
and a=A/(B+A) . A policy is B-discounted (average) optimal for

the birth and death process if and only if it is ag-discounted (average)

optimal for the random walk.
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Proof. Note that the transition probabilities and rewards of the

two processes are such that

Mi,a)g(i,a,3)/N if i#3
p(i,a,j)

1-1(i,a)/A if i=j,

and

z{i,a) gs(i.a)(8+k(i,a))/(8+l\)-

Then from [16], it follows for any policy f that
Wf(i) = Vf(i) and ¢f(i) = A¢f(i) for all i.
This yields the assertion. |
We are now ready for our main result.

Theorem 6.2. There exist incfeasing B-discounted and average
optimal policies for controlling the birth and death process.
Proof. The random walk described in Theorem 6.1 clearly satisfies
the assumptions of Theorem 3.l1l. Here r'(i,a)==-h'(i)(B+A)-l.
Then there exists an increasing g-discounted optimal policy for the
random walk, and by Theorem 6.1 this policy is also p-optimal for

the birth and death process. Similarly, the existence of an

increasing average optimal policy follows by Theorems 4.2 and 6.1. |

We now return to the queueing example that we briefly dis-

cussed in Section 1.

Example. Consider an MIM|1 queue whose arrival and service rates
Lo~ o o o

are controlled as follows. At each service completion or customer
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arrival, the number of customers in the system is observed. Based
on this number, an arrival and service rate pair (xa,ua) is selected
from the set {(kl,ul),...,(km,um)]. A cust c(a) per unit time is
charged for using (Aa,pa), a cost h(i) is charged for holding i
customers in the system for one time unit, and a reward R is
received from each entering customer. Then under the assumptions
in Theorem 6.2 on the (xa,pa)'s and costs, there exist increasing
B-discounted and average optimal policies for controlling the queue.
It is interesting to note that increasing policies may not be
optimal for this queueing process if its state space is finite. We
have found such examples for both discounted and average rewards,
also see [3]. The reason is that the rejection of customers arriving
to a full queue limits the holding cost, and so a service
and arrival rate that is optimal for a given state may not be
economical in a higher state to reduce the queue. Also note that
we ﬁave tacitly assumed that there is no cost for changing the arrival
and service rates. When such costs are involved, the analysis is
more complex. This problem has only been solved for the case when
the arrival rate is fixed and the service rate can be set at 0 or

at a fixed rate u >0, see Deb (1276).

We have been considering a birth and death process with a
special reward structure just for the sake of simplicity. Theorem
6.2, and an analogue for decreasing policies, also hold for processes
with more general rewards (as in Theorems 3.1 and 3.2), and with
state-dependent action spaces (as in Theorem 5.1, an example is in

[1]). Because of the equivalence in Theorem 6.1, the computation
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of optimal policies for the birth and death process is the same as

that for random walks.

Acknowledgement. I thank the referee for pointing out two errors
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improving my first draft.
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20. Abstract continued

there exist monotone optimal policies, for discounted and average
rewards, and we show how to compute some of these policies, For
example, in certain settings it is optimal to increase the tendency
of backward movement of the walk as its location increases. We also
present similar results for controlling the parameters of a birth and
death process and an M/M/1 queue.
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